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This paper presents the formulation and solution of the problem of WI- 
steady flow of vlaco-plastic material in a circular tube for a variable 
pressure gradient. A method of solution of the axiayuetric *problem with 
unknown boundary9 la developed for the equationa of heat conduction. The 
law of change of the gkernelg of the flow with time Is determined. 

1. Formulation of the proldem. We consider the flow of viaco- 
plastic material in a circular tube of radius R under the action of a 
given pressure drop. We will asallse the tube to be sufficiently loug (in 
order to neglect the influence of the ends), the material of the tube to 
be infinitely rigid, and the viaco-plastic material to be incosqmesaible. 
We direct the Oz axis along the tube in the direction of motion and the 
axis Or along one of the radii. lbe equation of motion in cylindrical 
coordinates on the basis of the assumption of &al aynmetry has the 
form 

au 
pat=‘-@ ( & + + g) + + + P (t) (P(t) =--g) (1.1) 

\ 

Here u ia the axial velocity component, p the density, r the coeffi- 
cient of viscosity, P(t 1 the pressure drop on a unit length of tube, I ,, 
the limiting shear stress. 

‘Ihe given pressure drop will be assmmzd to be sufficiently large so 
that the corresponding shear stresses exceed the limiting shear stress. 
The entire region of flow consists of trq parts: the region of actual 
visco-plastic flow b,(t) < r < R) in which the distribution of velocity 
is described by (1.11, and the region of the elastic mkemelm (0 < r < 
ro(t 1)) moving as a rigid body. Let rO (t) denote the radius of the keruel 
which is an unknown function of tims, subject to determination. 

l’he critical condition will be tsken in the form 
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v (r, 0) = F (r) for n,(O) < r -CR (I.21 

Here r(0) is the initial radius of the kernel. 

At the wall of the tube, as in the case of a viscous liquid, one will 
have the condition of attachment 

v (r, t) = 0 for r--R (1.3) 

Since at the boundary of the nkernel" the stress is equal to the 
limiting shear stress 

av -0 
ar- 

for r = ro(t) (1.4) 

‘Ihe second condition on the boundary of the kernel we obtain by con- 
sidering it as a body of variable mass, which changes with the variations 
of the area of its cross-section. Applying the law of conservation of 
mcmentum to the mass of unit length and taking into consideration that 
mass is added (taken away) without shock, we find 

p duo (2) 
dt 

= P(C) - -?.3- 
r0 (4 

(1.5) 

Here v,(t) is the velocity of the kernel. Integrating (1.5) with 
respect to t, we will have 

t t 

vo (t) = v. (0) + $ s P(a) da - T 1 da 
r0 (4 

0 0 
(1.6) 

We introduce now non-dimensional time, radius x and velocity u by the 
formulas 

y=Lt, 
IT 

XZL., 
R 

I(=-5 
V 

We will reduce the equation (1.1) and the boundary conditions to the 
non-dimensional fon 

au a*u+ I au+ s -=_ __ _ 
ay ax= x ax +P. W for y>O, ~(Y)<xc~ (1.7) 

X 

For the construction of the solution it is sufficient to assuae the 
boundary condition fulfilled for the limit 

lim U(x,y)=~=(D(x) ror 6,<2<i 
U++o (W 

lim U (2.~)" 0, aU 0 -= 
x-+2$+o a% 

(Y> 0) (W 
x-+1-0 
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Jim+0 lJ (T Y) = al (60) + \ [P, (0) - -S]do !Y > 0) (1.10) 

0 

Hare P,(y 1 is the non-dimensional pressure 
the tube, S is the St. Venant parameter, 6(y) 
of the kernel 

p. (Y) = - Ra p (0, 
I*V 

s=?!&- 

junp per unit length of 
the non-dimensional radius 

) 6 (y) = !$!I (1.11) 

2. Construction of the solution. For the solution of the form- 
ulated problem with unknown movable boundary we will use a method which 
has been proposed by Kolodner for linear problems I 1 1. We will seek the 
solution of the problem (1.71- (1.101 in the form 

Y 

lJ k Y) = -ST + 
s 

P. (4 da + K (2, Y) + A (2. Y) (2-f) 

0 

‘he function K(x, y) we will choose such that it satisfies the equa- 
tion 

aK -2K+$~~ 
and the condition 

8Y 

lim K (I, y) = Sz + Q, (I) for 60 <1: < 1 
Y-t+0 

In the capacity of such a function we may take, for example, 

(2.2) 

(2.3) 

(2.4) 

It is readily verified that for y > 0 and any x the function X(x, yl 
satisfies Equation (2.2). We will show that (2.31 is likewise satisfied. 

Since WE? are interested in the values of K(r, y) for small y, the Bessel 
function wiar the integral sign may be replaced by its asymptotic re- 
presentation 

Then, introducing the new integration variable 

Z- E a=-_= 
2VY 

we will have for 6, < x < 1 

lim K (JJ, y) = -$- lim x + 2 a Vits lx + 2a V3 + 
Y-+-t0 c= Y+bo 

01 
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t@,(x+2a ~$jle-a'~a =S.v +@ (5) 8, = 
60-x 

X’ 

The justification of the limit process under the integral sign follows 
from the continuity of a(x). 

At the ends of the interval the limit depends on the method of approach 

to the points Jf,(l, 0) andM2(6a, 0). For passage along straight lines 

x= 1, x- 6, it is equal to l/2 S and l/2 [S 8, + cO(S,)I , respectively. 
For the function X(x, y) we will have the following boundary problem: 

a~ _a¶~+ I aA -- 
ay a+ x ax 

for y>O, 6(y) <T-C 1 

lim h(z, y)= 0 rot b<x<i 

M-++o 
Y 

I’, (a) da - 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(Y > O! (2.10) 

We will seek the solution of the problem (2.6)-(2.10) in the form of 
the sum of a regular solution 6(x, y) of (2.6) which satisfies the con- 
ditions 

CB(z,O) = 0, Q(1.Y) =f(Y)--N(1*Y). IO (0. Y) I <c (2.11) 

snd a singular solution N(x, y) which, except for the zero initial condi- 
tion, satisfies also two discontinuity conditions on the arbitrary curve 
x= S(y) 
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(2.12) 

and the conditions 

I N (0, Y) I < 4 N(-,y)=O (2.13) 

lhe regular solution should exist in the region TI 0 ( y < yo, 0 < 
x < lj.A3 regards the singular solution, we a88wae its existcace in the 
following. We will denote by D+ the region (0 < y < yO, S(y) < x < DO 1, 
WLtheregion~O<y<yo, 04 x < 8(y)), coalpleslentary to D+. Also 
letbbetheclosureD_+D+ inthemanifoidB( O<y<y,, O<X<W~ 

I x- S,l + ly 1 > 01 and D the interior of D. Obviously neither D nor D 
depend on the choice of S(y). Bela wz will show that there exists a 
unique bounded solution of the boundary value problem (2.12)-(2.13) in 
the region D. 

Construction of the regular solution. Fran a physical point of view 
the regular solut& may 
in the infinite rod with 
zero temperature and its 

be lnderstood a8 a distribution of tqrature 
a conductivity equal to unity, having initially 
surface being maintained at the teqerature 

a(y)=f(~)--Nil,~) 

It is known that such a solution may be written in the form 

0 (2, y) = 
O” Jo@,~) 

a (y) - 2 Ix to) 2 akJ1 (Q~) exp (- ak*y) - 
k=l 

O” JO(aks) Y 

-22 
kc1 =kJl tak) 

e=p (-- akP) s a'(o)exp(ak*a) da 
0 

(2.14) 

where ak is the root of the equation Jo(a) = 0, and Jo(u) and Jl(a) are 
Bessel functions of zero and first order. 

Construction of the singular solution. lhe construction of the singu- 
lar solution will be based on properties of plane thermal potentials of 
the siaple and double layers of sources distributed uniformly over the 
circle. We will show that the singular solution may be represented in 
the form of a combination of the-1 potentials so that all boundary con- 
ditions will be fulfilled. let 

N (5. Y) = KI (~9 Y) + KS (2, Y) (2.i5) 
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(2.16) 

It is readily verified that lyt(x, yl satisfies Eqaation (2.6) for 
x f S(y), the zero initial condition aud th conditions for x = 0 and 
x + 00, For this purpose it will be ass-d that the function S(y) is 
coutinuously differentiable, that it vanishes nowhere aud that its de- 
rivative 8’(y) < c/ 4~. The fuuctiou Ql(xl is continuous, differentiable 
and Q’.(x) satisfies a Lipschitz condition in the interval 6, < x < 1, We 
will show that Kl(x, yl has on the curve r = S(y) discontiuuities equal 
to &p(y) aud that its derivative ~K,(x, y)/& has discontinuities 
- l/2 ~~y~/~(y). 

We will divide the integration interval into two parts: from 0 to 

Y- c andfrcmy-rtoy; theu, replacing intheinterval <y-f <u<y) 
the Bessel function by its asymptotic expausiou 

we will have 

X exp Z lx* + aa ~1 d-q + &. If ‘p (?I ‘I/s(?)x 
4 (Y - ?I v s 

xx y-s 

X =--s@lt _ 6’ frlf - [;c 

4 (Y - 71)% 2 QJ - q)% > 
e=p 

-5 (W + 
4(Y--7lrl) 

(28) 

The first two tenas have no singularities and are coutiuuously differ- 
entiable fuuctions, the third term, apart from a factor, represents the 
sun of linear thermal potentials of a simple and a double layer for which 
it has been shown [1,2 1 that it has discontinuities q5(yJ. Differeutiat- 
ing (2.18) with respect to x and using a property of linear thermal 
potentials, it may be shown that aK1/dz has on the curve x = Sty) the 
discoutinuities 
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lim akl- lim ak, = _ i 9(Y) 
x+a(u)+o az x-&(y)-_0 az 2w 

Performing the same transformation as above we will express K,(x, y 1 
by a linear thenaal potential of a sinple layer. Hence, the function 
K,(x, y) will k continuous and its derivative will have on the curve 
x = S(y) tk discontinuities 

lim akp-lim ak,=+(Y)+ i ‘p (Y) 
x-&(u)+0 az x+8(y)-cl a2 2 6 (Y) 

‘Rum, the singular solution satisfies all tk imposed conditions. ‘Ihe 
uniqueness proof may k carried out in the same manner as in [1,2 1. 

‘Ihe sun of the regular and of the singular solutions will, in addition 
to the conditions (2.121, satisfy the condition (2.81, being tk solution 
of (2.6) in the region { 0 < y 6 y,, , 0 < x < 11. But this solution still 
contains a derivative of 6 (~1. We will demand that 

lim h (2, y) = 0, lim CQ (z* Y) - 0 
=4/)-0 ~-4(V)-0 6z 

(2.19) 

‘lhen X(x, yl in the region 10 < y < y , S(y) < x < 1) will represent 
the unknown solution of the problem (2.6f-(2.101. The conditiam (2.19) 
may k considered as equations for the detewination of the function 
S(y). It may be shown that any solution of the first equation (2.191 
satisfies simultaneously the second and vice-versa. Thus, if one of tk 
equations (2.19) had a unique solution, then this solution gives also tk 
law of change of tk boundary of tk .kernelm with time, and (2.1) the 
distribution of velocities of tk visco-plastic flow. 

In conclusion, we will note that an analogous problem ks been studied 
by Krasil’ nikov [ 3 1. In our opinion, his solution may not k considered 
to be exact, since the author’s formulation of tk problem raises some 
objections. ‘Ihe author asswmz~ from tk start that the visco-plastic zone 
of flow occupies the entire cross-section of the tube and seek the solu- 
tion of the equation of motion , satisfying tk initial condition and tk 
condition of attacbnt at tk wall; then, based on tk mzll-hnam fact 
that the plastic deformation may not spread to the axis of tk tube, k 
assumes the existence of the kernel of the flow, the boundary of which 
k finds from tk condition that no slip can occur on tk boundary. From 
tk physical point of view such a formulation of the problem means a 
denial of the influence of tk boundary of the kernel on tk developant 
of the flow, which naturally affects the constructed solution (the last 
does not enter into it). For tk correct fomulation of the problem tk 
region of existence of tk solution is necessarily ass-d to k the 
region between the wall of the tube and tk unknown moving kernel, at tk 
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boundary of which tuu conditions must be given. 

The author wishes to thank S.V. Fal’kovich for his advice leading to 
the completion of the presented work. 
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