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This paper presents the formulation and solution of the problem of un-
steady flow of visco-plastic material in a circular tube for a variable
pressure gradient. A method of solution of the axisymmetric “problem with
unknown boundary®" is developed for the equations of heat conduction. The
law of change of the "kernel® of the flow with time is determined.

1. Formulation of the problem. We consider the flow of visco-
plastic material in a circular tube of radius R under the action of a
given pressure drop. We will assume the tube to be sufficiently long (in
order to neglect the influence of the ends), the material of the tube to
be infinitely rigid, and the visco-plastic material to be incompressible.
We direct the Oz axis along the tube in the direction of motion and the
axis Or along one of the radii. The equation of motion in cylindrical
coordinates on the basis of the assumption of axial symmetry has the
form

R A R 40 (Poy=—22)

Here v is the axial velocity component, p the density, r the coeffi-
cient of viscosity, P(t) the pressure drop on a unit length of tube, r,
the limiting shear stress.

The given pressure drop will be assumed to be sufficiently large so
that the corresponding shear stresses exceed the limiting shear stress.
The entire region of flow consists of two parts: the region of actual
visco-plastic flow (rg(t) < r < R) in which the distribution of velocity
is described by (1.1), and the region of the elastic "kernel* (0 < r <
ro(t)), moving as a rigid body. Let ry(t) denote the radius of the kernel
which is an unknown function of time, subject to determination.

The critical condition will be taken in the form
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v(r,0)=F(r) for r(0)<r<R (1.2)

Here r(0) is the initial radius of the kernel.
At the wall of the tube, as in the case of a viscous liquid, one will

have the condition of attachment

v(r,2)=0 for r=R (1.3
Since at the boundary of the "kernel" the stress is equal to the
limiting shear stress
g:i=o for r=re(t) (1.%)

The second condition on the boundary of the kernel we obtain by con-
sidering it as a body of variable mass, which changes with the variations

of the area of its cross-section. Applying the law of conservation of
momentum to the mass of unit length and taking into consideration that

mass is added (taken away) without shock, we find

dvg (1) _ 27
p i = P(t) ——ro(t) (1.5)

Here v,(t) is the velocity of the kernel. Integrating (1.5) with

respect to t, we will have
¢ t

L !
() =200+ | PErds— 22 (T (1.6)
0 0

We introduce now non-dimensional time, radius x and velocity u by the

formulas

r
U= —

R’ V

li

y=_v-t, z

R
We will reduce the equation (1.1) and the boundary conditions to the

non-dimensional form
(1.7

U _aU 1 U, S ,

6_3;—_55 -—x—-g"*'—;:—-‘*‘Po {y) for y>0, 8 (y) <z <1

For the construction of the solution it is sufficient to assume the
boundary condition fulfilled for the limit

lim Uz, y) =28 _0@)  tor so<z<1
10 14

(1.8)

lim U (z,y) =0, im % _0 @w>0 (1.9)
by+o O

X—>1—0
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Here P (y) is the non-dimensional pressure jump per unit length of

the tube, S is the St. Venant parameter, §(y) the non-dimensional radius
of the kernel

R’ S = ToR

P.(y)=—}J-T—P(‘)’ Ty

b =20 (L11)
2. Construction of the solution. For the solution of the form-
ulated problem with unknown movable boundary we will use a method which
has been proposed by Kolodner for linear problems [1]. We will seek the
solution of the problem (1.7)-(1.10) in the form
g

U(x,y):—Sx+S P, (c)ds + K(z,y) + A(z,¥) 2.1
0

The function K(x, y) we will choose such that it satisfies the equa-
tion

K __ K 1 9K

E I = (22)
and the condition

lim Kz, ) =Sz +®D(x) for f<r <1 (2.3)

y+10

In the capacity of such a function we may take, for example,
1

1

K(x,,,):EFS &[s&+a>(g)11.,( E)exp__ﬁz_;'_i?)_da (2.4)

It is readily verified that for y > 0 and any x the function K(x, y)
satisfies Equation (2.2). We will show that (2.3) is likewise satisfied.
Since we are interested in the values of K(x, y) for small y, the Bessel
function under the integral sign may be replaced by its asymptotic re-
presentation

1 2z

TIs(3)~ ——— ¢
o(2) 2n3

Then, introducing the new integration variable

a—-”—

2Vy

0,
jimoK(xy) ﬁ Jim SVI+2aVylS(z+2¢Vy)+

we will have for 8, < x < 1
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+ O +2a V)] e ¥da =Sz + O (2) (e,: 52"1—/; 0; = 12‘}'/;) (2.5)

The justification of the limit process under the integral sign follows
from the continuity of ®(x).

At the ends of the interval the limit depends on the method of approach
to the points M, (1, 0) and ¥,(5,, 0). For passage along straight lines
x=1, =23, it is equal to 1/2 S and 1/2[S 8, + ®(5,)], respectively.
For the function A(x, y) we will have the following boundary problem:

oA _on, 1 A

'Fy——‘a—t’-‘i‘?' ™ for y>0»§(y)<x-<1 (2.6)

lim A(z,y)=0 for So<z <1 2.7
y>10
¥
liniol (z,y)=S§ —S P, (c)do — (2.8)
X1
0
1
il Y ogp — (L FE) ge_
— B& 215+ 0 @1 o S Yerp =G ED az sy
¥
. de
Jm M@0 =0 +50() 28 § Ser— >0 (2.9
1
1 —
~ 7y Jetstr 0@ (S8 o —ELRO s -0
1
. n _ o 1 BB ()
i =S \etse+ o) fen (B2 (v>0) (2.10)

5,

— 3 (@) 1o (B Y exp —EEEON 0z =y ()

We will seek the solution of the problem (2,6)-(2.10) in the form of
the sum of a regular solution 0(x, y) of (2.6) which satisfies the con-
ditions

8(z,0)=0, 6, y) =/ —N{,y) 180, )|I<C (2.19)

and a singular solution N(x, y) which, except for the zero initial condi-

t.ion,(sacisfies also two discontinuity conditions on the arbitrary curve
z=58(y)
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(2.12)
lim N(z,9)—lim N(z,y) = o () lim %Y im N _yqy
x—+5(y)+0 x-+8(1)—0 x+3(1)40 9z xab(y)~o Oz
and the conditions
INO,wI<A4, N (00,y) =0 (2.13)

The regular solution should exist in the region T{ 0 < y < y,, 0 <
xz < 1}. As regards the singular solution, we assume its existence in the
following., We will denote by D, the region {0 < y < y,, 8(y) < x < »},
by D_ the region {0 < y < y,, 0< x < 8(y)}, complementary to D,. Also
let D be the closure D_ + D_ in the manifold E{f 0 < y <y, 0 < x < o0,
{x= 8yl + |y]> 0} and D the interior of D. Obviously neither D nor D
depend on the choice of 5(y). Below we will show that there exists a
unique bounded solution of the boundary value problem (2.12)-(2.13) in
the region D.

Construction of the regular solution. From a physical point of view
the regular solution may be understood as a distribution of temperature
in the infinite rod with a conductivity equal to unity, having initially
zero temperature and its surface being maintained at the temperature

a(=fy—Nd,y)
It is known that such a solution may be written in the form

o Jol(a,r)
0w 9) =8 () —22(0) 3] 57,1y P (— ) —
k=1

i Jo (@) ¢
Ty (ag oXP(— “x’y)g a’ (o) exp (a,%) do (2.14)

k= 0

where a, is the root of the equation Jy(a) = 0, and Jy(a) and J,(a) are
Bessel functions of zero and first order.

Construction of the singular solution. The construction of the singu-
lar solution will be based on properties of plane thermal potentials of
the simple and double layers of sources distributed wmiformly over the
circle. We will show that the singular solution may be represented in
the form of a combination of thermal potentials so that all boundary con-
ditions will be fulfilled. Let

Nz, y) =K, (x,9) + Ks(z, ¥) (2.15)
where

v

Koo = SO Lo (200 v 1 (L)
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v
X exp [=’+B’(n)] dn— ; S?(n)ﬁ(n)ﬁ'(n) %

4iy—m) yv—n
1. (=8 () — [+ W] 4 2.16
X "'(2(11—'4))ep sg—m " (2.16)
v
__ 10293 3 (1) —Ix’-i-%'(n)l
K= 4§ v—1 I°(2(y—n)) P - @ 1D

It is readily verified that K,(x, y) satisfies Equation (2.6) for
x # 8(y), the zero initial condltlon and the conditions for x = 0 and
x+ o, For this purpose it will be assumed that the function 8(y) is
continuously differentiable, that it vanishes nowhere and that its de-
rivative 8’{y) < ¢/ vly. The function ®(x) is continuous, differentiable
and ¢ {x) satisfies a Lipschitz condition in the interval §,< x < 1. We
will show that K,(x, y) has on the curve x = 8(y) dlscont;mulues equal
to ¢ly) and that. its derivative dK ,(x, y)/0x has discontinuities
- 1/2 ¢ly)/8(y).

We will divide the integration interval into two parts: from 0 to
y -~ ¢ and from y — ¢ to y; then, replacing in the interval (y — ¢ <y<y)
the Bessel function by its asymptotic expansion

I,(z)~ V_;_u_; &t
we will have
Yt
A 8 3 (n) 23 (1)
Ki(z,y) = % (3 () gl (22 —s) L {22\
OS (y—n)’{ 2(y— ) ( —) )}
y—s¢
— [z 4+ ¥ (n)] 1\ 2MmMi@¥(n) z8 (n)
XOP—rm—n T2 oS v— I°<2(y—-—n))x
v
[a® + 32 (7)) ST
X ex .-.___«__.d 3
Pty T = Vm y&?(.n)V M) x
x [Lz=3%Mm) ¥ —lz—3@} , 9.4
{4(3;—-1:)"' 2y —m)" }exP 4(y—m) K =18)

The first two terms have no singularities and are continuously differ-
entiable functions, the third term, apart from a factor, represents the
sum of linear thermal potentials of a simple and a double layer for which
it has been shown [1,2 ] that it has discontinuities ¢(y). Differentiat-
ing (2.18) with respect to x and using a property of linear thermal
potentials, it may be shown that 9K, /9x has on the curve z = 5(y) the
discontinuities



206 A.I. Safronchik

lim g Ok 1 o)
x-+8(y)+0 0T x-+8(y)—0 T 2 3 (y)

Performing the same transformation as above we will express K,(x, y)
by a linear thermal potential of a simple layer. Hence, the function
K,(x, y) will be continuous and its derivative will have on the curve
z = 8(y) the discontinuities

1 ks .. 8ky _ ... 1 oy
im —Z2—iim == I A -
2+8(y)+0 0% x+B(y)—0 O YT 3 )

Thus, the singular solution satisfies all the imposed conditions. The
uniqueness proof may be carried out in the same manner as in[1,2].

The sum of the regular and of the singular solutions will, in addition
to the conditions (2.12), satisfy the condition (2.8), being the solution
of (2.6) in the region {0 < y < ¥4, 0< x < 1}. But this solution still
contains a derivative of 5(y). We will demand that

. . A (z,y)
lim A(z,y)=0, lim %Y -0 2.19
x=+5(1)—0 Y xs3(y)—0 Ox @19

Then A(x, y) in the region{0< y < y,, 8(y) < z < 1} will represent
the unknown solution of the problem (2. 68-(2. 10). The conditiomns (2.19)
may be considered as equations for the determination of the function
5(y). It may be shown that any solution of the first equation (2.19)
satisfies simultaneously the second and vice-versa. Thus, if one of the
equations (2.19) had a unique solution, then this solution gives also the
law of change of the boundary of the "kernel* with time, and (2.1) the
distribution of velocities of the visco-plastic flow.

In conclusion, we will note that an analogous problem has been studied
by Krasil’nikov [3 1. In our opinion, his solution may not be considered
to be exact, since the author’s formulation of the problem raises some
objections. The author assumes from the start that the visco-plastic zone
of flow occupies the entire cross-section of the tube and seeks the solu-
tion of the equation of motion, satisfying the initial condition and the
condition of attachment at the wall; then, based on the well-known fact
that the plastic deformation may not spread to the axis of the tube, he
assumes the existence of the kernel of the flow, the boundary of which
he finds from the condition that no slip can occur on the boundary. From
the physical point of view such a formulation of the problem means a
denial of the influence of the boundary of the kernel on the development
of the flow, which naturally affects the constructed solution (the last
does not enter into it). For the correct formulation of the problem the
region of existence of the solution is necessarily assumed to be the
region between the wall of the tube and the unknown moving kernel, at the
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boundary of which two conditions must be given.

The author wishes to thank S.V. Fal’kovich for his advice leading to
the completion of the presented work.
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